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Wind blowing across shallow water contributes to secondary flow across a vertical 
section. For particles which are not neutrally buoyant the vertical sampling of the 
secondary flow is non-uniform : buoyant material drifts with the wind and slightly 
dense material is carried against the wind. This paper focuses attention on the joint 
dependence of the horizontal dilution rates upon the strength of the wind-augmented 
current and upon the vertical rise (or sinking) velocity of the particles. In strong wind 
the greatly enhanced mixing counterbalances the onshore drift and explains why 
shoreline pollution is not significantly correlated to the onshore wind. 

1. Introduction 
When wind blows across a river or estuary, flotsam tends to drift with the wind, 

while mobile sediment tends to be carried in the opposite direction. This difference 
in behaviour is attributable to the secondary flow driven by the wind: the surface 
water is dragged along in the direction of the wind stress and there is a compensating 
counterflow near the bed (see figure 1). If a mixture of materials with different rise 
(or sinking) velocities is released into the flow there will be a tendency for the species 
to separate out. The efficiency of this fractionation can be severely reduced by the 
horizontal diffusion of the individual constituents. 

Longitudinal fractionation is the basis of several chemical analysis techniques and 
chemical manufacturing processes. For over 20 years theoretical chemists have 
known how to calculate the longitudinal dilution rate as a function of the transverse 
rise (or sinking) velocity (Giddings 1968). Transverse dispersion associated with 
secondary flows has nearly as long a pedigree. For a neutrally buoyant tracer Fischer 
(1969) demonstrated experimentally and calculated theoretically how the transverse 
mixing rate in a curved channel could be up to 10 times what one would expect in 
a straight channel. Here we combine the mathematical ingredients of these two 
classical papers and we show how to calculate the longitudinal, transverse and mixed 
shear dispersion coefficients as functions of both the rise (or sinking) velocity and the 
strength of the wind-augmented current. The key assumption underlying such 
analyses is that the horizontal dispersion takes place on a timescale which is long 
compared with the equilibrium time for vertical rise and diffusion. 

In the final section of this paper a solution of the horizontal advection-diffusion 
equation is used to calculate the dependence of the shoreline pollution on the onshore 
wind drift. For light winds (weak onshore drift) buoyant material is carried towards 
the shore giving slightly increased pollution. However, for strong winds (strong 
onshore drift) the greatly enhanced transverse shear dispersion brings the shoreline 
pollution level back down again. This non-monotonic dependence upon wind 
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FIQURE 1.  Sketch of the wind-driven velocity profile and the separation of buoyant 
and sinking particles. 

strength is compatible with field observations that shoreline pollution is not 
significantly correlated with the onshore wind (Gameson, Bufton & Gould 1967). 

2. Reaction-diffusion in shallow water 
For simplicity we shall investigate the local shear dispersion process as if the flow 

properties (depth, velocities, diffusivities) were independent of the horizontal 
coordinates x ,  y. We regard the flow as being principally in the x-direction, with a 
wind-driven transverse flow. The particle concentration c ( x ,  y, z, t )  is assumed to 
satisfy the reaction-diffusion equation 

a, C + U  a, C+ 'U ay C -k a , ( W C )  + h C  = K1 a q C +  K 2  a: C + a z ( K 3  a, C ) ,  (2.la) 

with w c - K K g a , c  = 0 on z = -h,O. (2.1 b,  c) 

Here ~ ( z ) ,  v(z )  are the horizontal particle velocities, w(z)  is the rise velocity, A ( z )  is the 
decay rate, and K ~ ( x ) ,  K ~ ( z ) ,  K ~ ( z )  are the eddy diffusivities (in principal axes). The 
boundary conditions (2.1 b ,  c )  express the zero flux of tracer into the bed z = - h  and 
out of the free surface z = 0. The magnitude of the rise velocity w depends upon the 
size and density of the particles. The fluid velocities used to determine U,'U are 
Reynolds-averaged velocities. For bacteria a non-uniform decay rate can arise from 
the penetration of sunlight into the water column. For reactive chemicals, uniform 
decay can result from oxygenation or other chemical reactions. 

To make substantive use of the shallowness, we introduce a small parameter S that 
characterizes the aspect ratio (depth to horizontal scale). Also, we use a frame of 
reference moving with horizontal velocity components U, V and we use a slow 
timescale T :  

X = S(x-Ut), Y = Q(y- Vt) ,  T = S2t, A = h/S2. 
The appropriate values of U and V are calculated in the next section. With these 
changes the advection4iffusion equation takes the rescaled form 

6 2 a T C + 8 ( U - U ) a x C + 6 ( V -  ~ ) a , C + a , ( W C ) f S 2 A C  = S 2 K , a ~ C + ~ 2 K 2 a ~ C + a Z ( K 3 a , C ) .  

(2.3) 
In the limit as the aspect ratio 8 tends to zero, the vertical concentration profile 

(2.4a) 

has the equilibrium shape 
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A convenient choice for the reference level zo is to ensure that 

IIYII = 1, (2.4b) 

where the vertical lines 11.. . I 1  denote a vertical average value. Thus, zo is merely the 
level at which y equals its average value. If K, tends to zero at the bed, then y has 
a power-law singularity (Smith 1986). 

Following Giddings ( 1968) we make direct allowance for the non-uniform sapling 
of the flow by representing the concentration 

c = yb. (2.5) 
The advectiondiffusion equation for b(X ,  Y, 2, 2') is 

S2ya,b+Sy(u-U)a,b+Sy(w-V)a,b+S2/iyb = S2y~,a'$b+S2~2a2y b+a,(yK,a,c), 
( 2 . 6 ~ )  

with y ~ , a , b = O  on z = - h , O .  (2.6b, c) 

What has been achieved by the change of variables (2.5) is the elimination of vertical 
drift w, at the price of y-weight factors associated with all the velocity and diffusivity 
terms. 

3. Formal series expansion 
The presence of the aspect-ratio parameter 6 allows us to formalize the heuristic 

calculations first given by G. I. Taylor (1953) and later modified by Giddings (1968) 
and by Fischer (1969). For small S we pose the regular power series expansion 

b(X, Y ,  Z, T) = 11 b 11 + Sb(') + S'W2) + . . . . (3.1) 
The leading term llbll is vertically uniform (i.e. the non-uniform vertical structure is 
already accommodated via the equilibrium concentration profile y) .  

The terms of order S in (2.6a, b, c) yield equations satisfied by b"): 

b(") = y(u- U) a,II b ! l  + y(w- V ,  ay l l b l l  9 ( 3 . 2 ~ )  

with YK,a,b(l) = 0 on z = -h,O. (3.2b, c) 

By virtue of the boundary conditions (3.2b, c) the left-hand side of ( 3 . 2 ~ )  has zero 
vertical integral. For consistency the right-hand side terms must have the same 
property. This forces us to specify the velocity components U, V of the moving frame 
of reference 

u = l l Y 4 ,  V = IIYz.'ll. (3.3a, b) 

In any other frame of reference there is not the hypothesized slow time evolution. 
With these values for U,  V a f i s t  integral for b(') is 

a,b(') = 'r y(u-U)dz'a,llbll+- y(w-V)dz'a,llbII. (3.4a, b)  
YK3 -h yK3 's -h 

For later use we note the identifies (corresponding to integration by parts) 

Ily(u- U) b(')II = - 113, b(l)  Y(U - U) dz' 11, (1, 
l h  

I ~ Y ( w  - V )  b(')II = - [la, b") Y(W - V )  Mil. 

( 3 . 5 ~ )  

(3.5b) 
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Our objective is to determine the slow horizontal evolution of llbll. If we take the 
terms of order# in (2.6u, b, c )  and average over the depth, then we obtain the 
horizontal evolution equation 

a,llbll + l l y (u -wM+ l ) l l  + l l Y ( ~ - w Y b ( l Y  + IlynII llbll = I I Y K l l l a ~ l l ~ l l  + IIYK2lla;llbll. 
(3.6) 

Equations (3.4), (3.5) enable us to  replace the b( l )  terms by a,Ilbll, ayllbll terms. The 
resulting horizontal evolution equation can be written 

The components D, of the shear dispersion tensor have the integral representations 

( 3 . 8 ~ )  

(3.86) 

( 3 . 8 ~ )  

In  the appropriate one-dimensional or neutrally buoyant limiting cases these 
formulae (3.8a, 6, c) are equivalent to the results derived by Giddings (1968, 
equation 19) and Fischer (1969, equation 6). If K3 tends to  zero at  the bed there are 
integrable singularities (Elder 1959 ; Smith 1986). 

4. Shear dispersion equation 

concentration IJc 11 satisfies the two-dimensional shear dispersion equation 
If we revert to the original coordinates x ,y , t ,  then the vertically averaged 

atllcll + llrulla,llcll + llY41ayllcll + IlyhII llcll 

= { D l l +  IlYKl I l l  a:Ilcll+ P 2 2  + IIYKZII } a;llcll+ 201, a, agllcll. (4.1) 
The presence of the equilibrium vertical concentration profile y ( 2 )  reveals how 
constituents with different rise (or sinking) velocities are moved at  different 
horizontal. velocities. Also, via y in the formula (3.8u, b,  c) for the shear dispersion 
components, we see that the different constituents experience different rates of 
dilution. 

As was emphasized by Taylor (1953), the shear dispersion coefficients D, depend 
inversely upon the vertical rate of mixing K ~ .  So, if the diffusivities K~ are small then 
it requires very little velocity shear for the shear dispersion to dominate. For 
turbulent flows K~ scale as hu,, where u* is the friction or shear velocity. Elder (1959) 
showed that in the longitudinal direction shear dispersion dominates turbulence by 
a factor of 40. So from the quadratic dependence of D,, upon the transverse 
velocities, we can infer that in the transverse direction i t  only needs a drift current 
of about 40-i of the friction velocity for transverse shear dispersion to match the 
transverse turbulence. 

In  practice the flow properties (depth, velocities, diffusivities and the equilibrium 
vertical concentration profile y )  are functions of horizontal position x ,  y. So, the 
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construction of the moving coordinate system X ,  Y would require a more complicated 
Lagrangian type of definition (Smith 1983). The appropriate generalization of the 
constant coefficient equation (4.1) is 

a,(hllcll) +az(hllYull llcll) +ay(hllYvll llcll) +hllYhll llcll 
= a,(",, + IIYK1 Ill azllcll) +a,(",, + IIYK2IIl a,llcll) 

+ a,(hD,, a, llcll 1 + ay(h&l  a, llcll). (4.2) 
When the decay rate h is zero, this equation is in conservation form. So, quite 
properly, there is then no loss of tracer. 

5. Constant-viscosity model 
For realistic flows the integral formulae (3.8a, b,  c) for the shear dispersion 

coefficients would need to be evaluated numerically (Fischer 1969; Smith 1986). 
Moreover, the coefficients D ,  depend nonlinearly upon the velocity components. So, 
there is not simple linear superposition of the effects of wind and the tidal current. 
Nevertheless, there is didactic advantage in considering an exactly solvable 
idealization. The chosen example is the effect of surface stresses on a constant- 
viscosity and constant-diffusivity flow. This conforms closely to the numerical 
investigation by Munro & Mollowney (1974). 

For a shallow flow the dominant terms in the horizontal momentum equations are 
P q U  = azllPll, ( 5 . 1 ~ )  
PaZ2V = ~yl lPl l ,  (5.1 b)  

with u = w = O  at z = - h ,  ( 5 . 1 ~ )  
and pa,u=71, paZv = 7 ,  at z = O .  (5.1 d ,  e )  
Here ,u is the constant viscosity, llpll is the vertically averaged dynamic pressure, and 
71, r2 are the components of wind stress acting at the upper surface (within about one 
water depth of a boundary, horizontal velocity gradients a: u, a: u would need to be 
included). 

It is convenient to decompose the velocity field into contributions associated with 
the bulk flow IIuII, 1 1 ~ 1 1  and with the surface stresses. The solutions of (5.1a-e) can be 
written 

with 

( 5 . 2 ~ )  

z A r lh  A 72h E = l + - ,  u = -  v=-. 
h 4P ' 4P 

(5.2c, d ,  e )  

Hence, we characterize the wind stresses rl, 7, in terms of the surface drift velocities 
4,6. Figure 2 shows the relative shapes of the velocity profiles for the bulk flow and 
surface drift contributions to the flow. 

For the purposes of the present paper we shall regard the quantities Ilull, Ilvll, 6,  
6 as being given. For completeness, we record that for the velocity components (5.2a, 
b )  to satisfy the momentum equations (5.1 a, b )  the pressure gradient must be related 
to the wind stresses and bulk flow: 

(5.3a) 

(5.3b) 
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FIQIJRE 2. Velocity profiles of the bulk flow and wind-driven flow. The dotted curves show the 
equilibrium concentration profiles for buoyant (P = 1)  and for sinking (P  = - 1)  particles. 

These equations are valid on horizontal lengthscales greater than the water depth. 
As with Euler’s equation there can be no normal flow across a boundary, but slip is 
permitted. 

6. Effective horizontal velocities U ,  V 
For particles with constant rise velocity w and constant vertical diffusivity K~ the 

equilibrium concentration profile y is given by 

with 
p=-, wh E = i + - .  z 

K3 h 

( 6 . 1 ~ )  

(6.1 b,  c) 

The vertical PQclet number P is positive for a rising substance and negative for a 
sinking substance. Figure 2 includes the equilibrium concentration profiles of y for 
P = - 1 ,  1.  

We are now in a position to quantify the different effective horizontal velocities 
(3.3u, b )  experienced by rising and sinking substances : 

exp (P) - 1 + 

v” {exp(P)[i--$+;]-$-$]. (6.2b) 
+exp(P)-1 

Despite appearances, there are no singularities at P = 0. 
Figure 3 shows the P-dependence of the bulk flow and surface drift contributions 

to the effective horizontal velocity. The curves have been plotted in a way which 
gives emphasis to the quantitative similarity with the velocity profiles shown in 
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FIQURE 3. The scale-up factom for the contributions of the bulk flow and of the wind-driven 
current evaluated at the free surface towards the total effective horizontal velocity of rising or 
sinking particles. 

figure 2 (i.e. buoyant particles tend to move with the surface water and dense 
particles tend to move with the bottom water). 

7. Evaluating the shear dispersion tensor 

contributions encourages us to write 
The decomposition (5.2a, b) of the velocity into bulk-flow and wind-drift 

where 

( 7 . 1 ~ )  

(7.lb) 

I n  terms of the two functions I,I^ we define the bulk flow, wind drift. and mixed 
coefficients : 

exp (P) - 1 
a m  = 

J o  

(7.3a) 

(7.3b) 

(7.3c) 
J o  L 
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FIGURE 4. Weight factors uB, a,, aM relating the magnitude of the horizontal shear dispersion to 
the bulk flow, wind-driven flow, and mixed terms. 

The explicit formulae for the P-dependence of aB, a, and aM are excessively lengthy. 
Instead, figure 4 plots the numerical values. The importance of these coefficients lies 
in the formulae for the shear dispersion tensor: 

l.2 

(7.4a) 

(7.46) 

(7.44 

For the velocity profile associated with the bulk flow, the shear is largest near the 
bed. Accordingly, the bulk-flow coefficient aB attains its maximum for a sinking 
tracer (with a negative value of P ) .  Conversely, the velocity profile associated with 
the wind drift has strong shear a t  the surface, and the wind-drift coefficient a, 
attains its maximum for a rising tracer. 

In the neutrally buoyant case (P = 0) it is an elementary task to evaluate the 
integrals (7.1),  (7.3) and to obtain the coefficients 

aB=m,  2 a,=&, a M = &  for P = 0. (7.5a, b,  c) 

8. Insensitivity of shoreline pollution to wind strength 
Gameson et al. (1967) found from field observations that shoreline pollution is not 

significantly correlated with the onshore wind. In this section we give an illustrative 
example which allows us to  explain why that might be the case. The example also 
facilitates a comparison with the computational investigation of neutrally buoyant 
tracers undertaken by Munro & Mollowney (1  974). 

We consider a steady discharge in water of constant depth, with bulk flow parallel 
to the shoreline, but with a wind-driven offshore drift. For a steady discharge the 
plume of contaminant becomes greatly elongated, and the concentration gradients 
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are greatest in the cross-flow direction. If the flow is principally in the x-direction 
parallel to the shoreline, then the two-dimensional shear dispersion equation (4.2) 
can be approximated : 

~,(hlly~ll Ilc II 1 +a,@ Ilyv I1 IIc I1 + h IIyA I1 Ilc 11 = a , ( W , ,  + I l y ~ ,  111 a,llc II ). (8.1 a)  
If there is a shoreline along y = 0, then the condition for no loss of tracer from the 
flow is 

hllYvll llcll-",,+ IIYK2111ayllCII = 0 on y = 0. (8.lb) 

Strictly this boundary condition (8.lb) applies on a lengthscale greater than one 
water depth away from the boundary. Although there can be no bulk flow 1 1 ~ 1 1  across 
the boundary, there can be a non-zero wind drift llyvll. 

For water of constant depth and constant values of all the parameters llyull, JJyw 11, 
IlyAll, D,,, I I Y K , I I ,  the solution for a point discharge of strength Q at xo, yo can be 
written as a product of a solution without decay or offshore drift, and a correction 
to accommodate both decay and drift : 

with (8.2b) 

In particular, the shoreline concentration has the x-dependence 

V 
2Q exp( -(x-xo)--- ' I y A  I' 2fr2 (yo + (x - x.))'). 

IICllshore = (2n)tahU U (8.3) 

The quantity 9 in the (8.2b) is the total transverse diffusivity : shear dispersion plus 
turbulence. 

The shoreline concentration has its maximum at the downstream location 

(8.4a) 

The maximum concentration has the formula 

x exp( -;{ 1 + ( % 7 2 + 4 7 r - 4 (  YillrAll 1 yo 97). (8.4b) 

If we write ( 8 . 5 ~ )  

then the highest shoreline pollution occurs with an onshore wind drift : 

= -Q(l + (1 + 3a)t). (8 .5b)  
9 
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Relative to the zero-wind-drift case the highest shoreline pollution is increased by a 
factor 

( 8 . 5 ~ )  

Figure 5 shows how the shoreline pollution varies with yo V / 9  for several values of 
the decay measure y i I l y A / / 9 .  It is only over a modest (negative) range of yo V / 9  that 
an onshore drift increases the shoreline pollution. Moreover, the maximum increase 
for zero decay ( A  = 0) is only ny a factor of 2 / 4 3  = 1.15. By contrast, an offshore 
drift (V positive) can cause dramatic reductions in shoreline pollution. 

It is the range of values of the quotient yo V / 9  that determines the sensitivity of 
the peak shoreline concentration to the wind strength. If we assume that the bulk 
flow is parallel to the shoreline (i.e. llwll = 0) ,  then the effective transverse velocity V 
and the total transverse diffusivity 9 can be written 

V =  6 { e x p ( ~ ) [ ~ - ; + s ] - $ - s } ,  
exp (P) - 1 

h2a, 
K3 

9 = -4, -k ( ( Y K 2 ( ( .  

( 8 . 6 ~ )  

(8.6b) 

For weak surface drift B the magnitude of the quotient yo V / 9  varies systematically 
with v" over the range 

So, over this limited range we could expect a significant correlation between shoreline 
pollution and onshore wind. However, for stronger surface drift B the quotient yo V / 9  
tends back to zero, i.e. the greatly enhanced mixing more than compensates for the 
increased horizontal transport of tracer. The net result would be an overall very weak 
correlation between shoreline pollution and onshore wind. 

Munro & Mollowney (1974) neglected horizontal turbulence IIy~,11, integrated out 
the longshore z-dependence, and limited their attention to neutrally buoyant tracers 
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1 2 3 4 5 

Decay rate, AL/B 
FIGURE 6. Comparison between the contours of inverse concentration computed by Munro & 
Mollowney (1974) for non-constant depth (solid curves), and the contours given by the solution 
(8.9a, b) to the advection-diffusion equation for constant depth (dashed curves). The numbers on 
the curves indicate the dilution factors that correspond to given values of the contaminant decay 
rate, and the strength of the vertical mixing. 

(P = 0, V = 0). For water of constant depth and constant values of h and 9 the 
solution to (8.1) for a discharge of strength M at offshore distance L is 

with 

In particular, the shoreline concentration has the value 

(8 .8b)  

To display their numerical results for the shoreline concentration Munro & 
Mollowney (1974, figure 32) used the combination of variables 

(8.10a, b, c )  

where H is the depth of water at  the discharge. The corresponding version of the 
above formula (8.9) is 

Munro & Mollowney (1974) considered a non-constant depth. So, in comparing the 
constant-depth solution (8.1 1) with their numerical solution we use a reference depth 
h = 0.85H which typifies the mean depth between the discharge and the shoreline. 
The qualitative agreement revealed in figure 6 gives us confidence that, except for 
rapid decay rates or along the lower axis (where the zero vertical diffusivity K )  makes 
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it inappropriate to use vertical averaging), the horizontal advection-diffusion 
equation is indeed a good model for dispersion in a wind-driven flow. 

When this work was begun the author held a postdoctoral fellowship funded by the 
Royal Society. 
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